ALTERNATIVE GEOMETRIC DETERMINATION
OF ALTAZIMUTHAL-DISTANCE
COVARIANCE MATRICES

By Tomads Soler' and Steven D. Johnson,” M. ASCE

AsstRacT: Conventional equations for determining the variance-covariance
matrix of vertical angles, geodetic azimuths and distances are based on the
standard law of propagation of covariance using the Jacobian matrix of the cor-
responding functional relationships. A conceptually simpler geometric ap-
proach exclusively dependent on the notion of rotation matrices is presented
here. The method completely avoids the cumbersome requirement of taking
partial derivatives of non-linear expressions. As an added advantage the method
contributes to clarify several points related to dimensional transformations be-
tween linear and angular units.

INTRODUCTION

The classical geodetic and surveying techniques for orienting net-
works, charts, and engineering projects when known azimuth reference
marks are unavailable, are the determination of astronomic azimuths from
observations to stars (Nassau 1948; Roelofs 1950; Mueller 1969). More-
over, in order to account for the orientation degree of freedom, a min-
imum of one azimuth is required when least squares adjustments are
implemented to recover the two dimensional point coordinates from an-
gle (or direction) observations. Otherwise the normal equation matrix N
is singular, and only inner constraint solutions (based on the pseudoin-
verse of N) are feasible (Pope 1971; Meissl 1982).

With recent advances in satellite geodesy, especially the introduction
of new methods and technology such as the Global Positioning System
(GPS), the possibility of measuring accurate geodetic azimuths indepen-
dent of the restrictive constraints imposed by astronomic observations
is increasingly apparent (Soler, et al. 1986). Consequently, future use of
stars as known reference points in geodetic astronomy may be limited
to the determination of first order astronomic latitude and longitude nec-
essary when accurate knowledge of deflections of the vertical is needed.

Several authors have discussed the theoretical problem concerning the
computation of the vertical angle (or its complement, geodetic zenith
distance), geodetic azimuth, and the spatial distance between two points
(standpoint and forepoint) of known geocentric Cartesian coordinates.
Final equations derived through different methodologies exist (Wolf 1963;
Arnold 1964; Sigl 1969). More lengthy expressions, in terms of the two-
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point curvilinear geodetic coordinates (\;, &;,h;: i = 1,2), are also avail-
able in the geodetic literature (Molodenskii, et al. 1960). Different ap-
plications of previously mentioned equations using data processed from
optical observations to artificial earth satellites have also been discussed
(Halmos and Szddeczky-Kardoss 1974; Kaniuth and Zernecke 1979).

It is well known that the variance-covariance matrix of the vertical an-
gle, azimuth, and the distance is readily available by applying the con-
ventional covariance propagation law in terms of the corresponding Ja-
cobian matrices (e.g., Uotila 1967; Mikhail, 1976).

Accurate determination of azimuths, vertical angles, and distances is
important in any geodetic surveying work—especially in jobs related to
precise engineering projects (e.g., dam deformation, alignment of par-
ticle accelerators used in atomic physics and stress-strain analyses used
in tetonic and earthquake studies. An alternative, simpler approach to
determining corresponding variance-covariance matrices will be pre-
sented. The method introduced is appropriate for post-processing, three-
dimensional data such as GPS results. The procedure is primarily based
on geometric principles and is independent of the more abstract concept
of Jacobian matrices; consequently, it is easier to implement when writ-
ing algorithms for coding computer programs.

Covariance MaTrices InvoLving CARTESIAN COORDINATES

Important transformations between different local Cartesian coordi-
nate systems generally used when GPS observations are post-processed
and analyzed, including interconnecting commutative diagrams, were
reviewed in Soler and Chin (1985). The main software output of any GPS
reduction program (e.g., Remondi 1984; Goad 1985) is two sets of pa-
rameters: the components (Ax, Ay, Az) of the base line vector from point
A to B (see Fig. 1) given in the local WGS72 frame (x, v, z) located at A
and the corresponding variance-covariance matrix 2, ay 4z, at B in the
same reference frame. The base (fixed) station (A) is assumed to be known
(i.e., we are strictly concerned with the relative position of point B with
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FIG. 1.—Local Cartesian Frames at Standpoint A and Forepoint B
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respect to A), and that all local WGS72 frames, whatever their location
on the earth’s surface, are assumed parallel to the geocentric terrestrial
(earth fixed) WGS72 system. For better practical visualization, the
(Ax, Ay, Az) components are usually transformed into the local geodetic
frame (e,n,u) [ie., east, north, up (geodetic zenith)] at A, namely
(Ae, An, Au). By its own definition, the local geodetic frame (¢, 1, u) changes
its spatial orientation from point to point and differs only by the local
deflections of the vertical from the “true” astronomical horizon system.
Adhering to historical precedent (Wolf 1963), only right-handed Carte-
sian coordinate systems will be used; therefore, departing from the left-
handed notation (N:north, E:east, U:up), preferred by some authors (e.g.,
Heiskanen and Moritz 1967; Rapp 1975; Vanitek and Krakiwsky 1982).
In the latter case, transformation matrices between geocentric and local
coordinate systems are not proper rotations, and extra permutation (i.e.,
symmetry or reflection) matrices are involved.

Several frames important to the discussions that follow are depicted
in Fig. 1. At point A, the local WGS72 and the local geodetic frames are
shown. In general, these frames are related through the mapping
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where R is the following proper rotation (R = R™" and |R| = + 1) matrix
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and A, ¢ are the geodetic longitude and latitude, respectively, of the
point, referred to the “WGS72 datum.”

The transformation between two sets of components of any arbitrary
vector expressed in the above systems may be written:
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At point B (Fig. 1), three different reference frames are drawn: one par-
allel to the local geodetic frame at A; the local WGS72 frame at B (which
is parallel to the local WGS72 at A); and a local spherical frame (the
reference sphere having origin at A, and radius r equal to the distance
AB) denoted by (v,4,d), and pointing in the direction of positive v (ver-
tical angle of B above the geodetic horizon of A), a (geodetic azimuth),
and r (spatial distance between A and B), respectively. This triad is also
depicted in Fig. 2, where the relationship between the (e, n, 1) and (v,4,4d)
frames through the polar curvilinear parameters v and o is shown.
Consider now the mapping
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FIG. 2.—Vertical Angle, Geodetic Azimuth, and Distance in Local Geodetic Frame

relating the local geodetic frame at A and the local spherical frame (v, 4,d)
located at B. This is established (see Fig. 2) through the rotation matrix:

1 1
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The following problem can be stated: determine (in linear units) the
variance-covariance matrix 2, s of the vertical angle, azimuth, and dis-
tance between points A and B, given the position of B, with respect to
A,- (Ax, Ay, AZ) and its covariance matrix E(Ax.ay,ﬁzjs = E[Ax,-.\y.&z} .

It is well known (e.g., Meissl 1984), that if (s a4z is diagonalized,
the resulting diagonal elements are the eigenvalues (principal or uncor-
related variances) of the matrix. The principal rms errors oy, , Oy, and
o., correspond geometrically to the magnitudes of the three semi-axes
of an ellipsoid (standard or mean error ellipsoid) centered at B. The three
eigenvectors of S, s determine the orientation of the ellipsoid prin-
cipal axes x, , ¥, , z, with respect to the WGS72 local system at B. Readers
prefering to avoid completely the eigen theory may consult Wolf (1975),
where explicit equations to determine the magnitude and orientation of
the error ellipsoid are presented. Recently, Hein and Landau (1983),
adapted this formulation, complementing their results with 3D error el-
lipsoid plots.
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Also known (see Appendix I), is the fact that the so-called ““pedal sur-
face” (i.e., locus of points with rms o, along the line of arbitrary direc-
tion cosines v;, v;, y3) is a surface circumscribed to the error ellipsoid
and tangent at the points of intersection with the mean ellipsoid prin-
cipal axes. Some interesting properties of two-dimensional pedal curves
(i.e., FuBpunktskurve = foot point curve), which are sections of the pe-
dal surface along planes containing any of the three principal axes, may
be consulted in Kéhr (1969), Groten (1969), and Veress (1974). The con-
cept of pedal surface is quite general and applies equally to moments of
inertia as well as strain (or stress) problems.

Applying the mapping in Eq. 1 to point B, the relationship between
the local WGS72 and geodetic frames at B may be written:

Rof(Z 2 S0 (Bt e it sishoniionls ol i o i paris 58 atana vt 52 s (8)

where the rotation matrix R; is given by Eq. 2 after replacing A and ¢
by Az and ¢p respectively. Consequently, the covariance matrix in the
local geodetic frame (e, n, 1) at B after applying the standard covariance
law is:

ST A R 9)

(e, An, Au)p (Ax, Ay, Az)g

where t denotes transpose.
Mappings such as Egs. 1, 5 and 8 can be combined in a single com-
mutative diagram as:

R,
(.2 = (enu)a
b SRR e e (10)
(e,n,u)g — (v,a,d)s

R

Recall that the (x,y, z)wcs local frames are always parallel; thus, when
only rotations are involved, it is not necessary to identify them by their
location. The following equivalent notations are implied (x,y,2)4 = (x,,2);

= (%, Y,2).
Therefore, the previously stated problem involves the mapping:

e s Tl o e (11)

which according to the commutative diagram in Eq. 10 can be solved
using the known matrices R, (i.e., the matrix R applied to the coordi-
nates of point A) and R. The transformation between the local geodetic
system at B and the frame (v,a,d); can be materialized through the ro-
tation R also shown in the commutative diagram.

By simple application of the covariance law and the commutative dia-
gram in Eq. 10 we may write:

D ¥5iRiie B 1B mRRE S BR el  msaisions s (12)

(v.a.d) (Ax, Ay, Az) (Ax, Ay, Az)

where the values of the matrices R and R, are easily determined from
equations 6 and 2. Although Eq. 12 solves the problem postulated pre-
viously, some further clarifications are in order.

61



Covariance MATRICES INvoLVING CuURVILINEAR COORDINATES

In geodesy, due to the peculiar functional relationship between Carte-
sian and curvilinear geodetic coordinates, it is convenient to define (in
general):

X = g;i(ql g2 ,qa); i= 1,-2,3 .................................... (13)

where x; and g; (i = 1,2, 3) represent arbitrary sets of Cartesian and cur-
vilinear coordinates. :
Eq. 13 applied to the parameters shown in Fig. 1, takes the form:

Ae r cos v sin a 0
Anp=3rcosveosap =R §0p ..cuiiiiiineiirerrannnnnennn. (14)
Ay rsin v r

were the correspondence ¢; = v, 4 = « and g5 = r is implied.

Then, the Jacobian matrix (hereafter referred to as Jacobian, but termed
Jacobi-matrix by some authors possibly to avoid any confusion with the
Jacobian determinant) of the transformation is written:

_ 0(Ae, An, Au)

v, e, 1)

The elements of the above matrix may be obtained without taking any
partial derivatives by using the equations originally presented in Soler
(1976). In particular:

where R was defined previously by Eq. 6 and H may be termed the
Lamé matrix, which is diagonal when curvilinear orthogonal coordinates
are involved. Namely:

hh 0 O r 0 0
H==:1.0 « hsz @i Sile0irocesaraiDiles filavivne aouanllat nalihoan (17)
0 0 h 0 0 1

In this special case, the diagonal elements are the three differential
parameters h; (i = 1,2,3) introduced by Lamé (1840). These parameters
are still used in textbooks on mathematical physics, including geodetic
references (e.g., Molodenskii, et al. 1960; Heiskanen and Moritz 1975).

The values of the diagonal elements of H in Eq. 17 were derived in
accordance with the ordering of axes and variables presented in this pa-
per (i.e., v, a, 7).

However, when the conventional covariance propagation law is used
to compute 2, in terms of X, ana . the explicit inverse functional
relationships of v, o, and r in terms of Ae, An, and Au as given by Eq.
7 are required. Thus, the following Jacobian J' (and not J) should be
calculated

v, o, 1)

= e, . A



J' is the inverse of the Jacobian given in Eq. 15 or 16. Consequently
CEN R < e RSN i oz SN (19)

Therefore, the required Jacobian J’ is nothing more than the rotation
matrix R, scaled by the inverse of the Lamé matrix H™".

The above results illustrate the basic difference between the use of
Jacobians in lieu of rotation matrices when the covariance law is applied.
Rotation matrices are unitless: they conserve the element’s units of the
original covariance matrix. In this particular example, when Eq. 12 is
used, the variance and covariances of the parameters v, «, and r in linear
units squared (e.g., cm® mm?) results directly. The corresponding rms
errors (i.e., 0,,0,,0,) are the uncertainties of the position of point B
along the v, 4, and d axes. The points on the three orthogonal axes (v, a,d)
with values o, 0,, and g, belong to the pedal surface of point B, and
are not points on the mean error ellipsoid (see Appendix I).

However, when using the standard Jacobian approach, the elements
of the resulting covariance matrix will have mixed dimensional units.
These will be angular units (radians squared) for the variances o? and
o’ ; the covariance o,, , linear units squared for o7 ; and mixed units (ra-
dians X length) for the covariances o,, and g,,. Thus, in any differential
manifold around a point, the transformations between angular and lin-
ear units are established along the tangents to the coordinate curves
through the Lamé matrix H. This matrix, in essence, is playing the role
of a “stretching” operator.

From the previous discussion, it follows that dimensional changes be-
tween covariance matrices with angular and linear units is achieved
through Lamé’s matrices. For example, using 2., to denote the co-
variance matrix in mixed (angular and linear) dimensions and 2,4 the
covariance matrix in linear units of the respectively vertical angle, azi-
muth, and distance, then:

Incidentally, readers familiar with tensor calculus would know that
although all ¥ matrices in Eqs. 20 and 21 are second rank tensors. Only
the matrix 2, contains the so-called tensor physical components. These
are the components along the local orthogonal Cartesian frame with axes
tangent to the three curvilinear coordinate curves at the point (Mc-
Connell 1931). More general tensorial definitions of physical compo-
nents may be consulted in Altman and de Oliveira (1977). The matrix H
should be used to transform vector components from angular units (ra-
dians) to linear units, for example:

a5, oy,
appe Blsie, bie Binenills voms gaus praveed soitcsall, odt g (22)
(47} T,

From Egs. 20, 21 or 22, o; = o,.
Substituting Eq. 12 into Eq. 21 it follows:
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(w,e,1) (Ax, Ay, Az)

Thus, by analogy with the covariance law, it is possible to write:

a(v,a,7) i
e 5 i) | 8 2 e (24)
d(Ax, Ay, Az)
and J=(J)'= el e REREHA: o). i, e sk, 1on (25)
(v, 1)

The currently used methodology to determine X, ., is based on the
explicit computation of the partial derivatives of the Jacobian Jin Eq. 25
from the functional relationship:

Ax Ae ¥ cos v sin o 0
Ayp=Riy{Anp =Ry{rcosvcosap =RyR §0p ............. (26)
Az Au rsin v r

The inverse relationship of Eq. 26, that is, formulas expressing v, «,
and r as a function of (Ax, Ay, Az) necessary to compute J' are presented
in the previously cited literature. The required Jacobian follows imme-
diately after the simple matrix multiplication from Eq. 24 without cal-
culating individual Jacobian elements or even the knowledge of the ex-
plicit functional relationship (Eq. 26) between parameters. Thus, in
practical applications when the covariance matrices are coded in com-
puter programs the explicit analytical form of the Jacobian matrix is not
needed. Only the rotational matrices R4 and R (probably already avail-
able, and used previously in the program) are required. The value of
the diagonal Lamé matrix H is straightforward and simple to produce
for any set of orthogonal curvilinear coordinates.

In summary, Egs. 12 and 23 are the two basic formulas for transform-
ing 2 (a:ay,42 as initially obtained from GPS observations to the final vari-
ance-covariance matrix of vertical angle, azimuth, and distance in linear
or mixed (angular and linear) units respectively.

CONCLUSIONS

In contrast to usual practice, the methodology introduced here pro-
vides an alternative approach to determining altazimuthal covariance
matrices without computing the Jacobian of the transformations between
curvilinear and Cartesian coordinates. The advantage of the method is
obvious: the required rotation matrices are easy to compute (products
of elementary rotations around the three axes) and generally available
by previous transformations. Consequently, no partial derivatives of
complex nonlinear functions are involved. In addition, some geometric
considerations are clarified when this approach is implemented. For ex-
ample, the distinction between mean error ellipsoid and pedal surface
is uniquely established. The standard deviations of the vertical angle,
azimuth and distances (when expressed in linear units) correspond to
the lengths along the Cartesian axes (v,4,d) from the forepoint to the
pedal surface. Lastly, the problem of transforming angular and linear
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units between the elements of variance-covariance matrices is simplified
by the introduction of the Lamé matrix.

AprrenDIX |.—PEDAL SurracE EQuATiONS

Assume that the symmetric variance-covariance matrix with respect to
the (x,y,z) coordinate system is given explicitly by:

o; cr?, O
E = O 103 fesmmmuasmsr s R S e s (27)
ye2) sym al

Then, the value of the variance (denoted ¢?) along an arbitrary direc-
tion of polar angles x and 7, (0 < x = 2w, and — 1/27 < 1 1/2%), and
direction cosines:

Y1 COS T COS ¥
= 920 = T008 TSI ¥ § i b s wese i s s S (28)
Ya sin T
may be written: o2 ={y} > fy} ...oiiiiiiiii (29)
(xy.2)

For simplicity, assume that X, , ., is diagonalized and its eigenvalues
computed. The resulting diagonal matrix:

d o'ip 0 0
= 20 hayssssn e LS 0 = T (30)
(e p 1 2p) sym gvf

can be called the principal variance-covariance matrix. The three eigen-
vectors associated with Eq. 30 will define the directions of the three prin-
cipal axes x,, y,, z, with respect to the original (x,v,z) coordinate sys-
tem.

The values of the principal or uncorrelated standard deviations Ty, s
oy, and 0., are the magnitudes of the three semi-axes of the principal or
mean error ellipsoid.

By definition the “pedal surface” related to a particular error ellipsoid
defined by the matrix 2f, ,, ., is the locus of points with values o, , where
now the direction cosines are given as in Eq. 28 but with the subscript
p (i.e., they refer to the principal axes).

Consequently, using Eq. 29 we may write explicitly:

d COS T, COS X,
0y, = 8 = {cos 1, cos X, cos 7, sin , sin 7,} 2 CO5'75 SN e s ds (31)

W
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Thus, in order to express the equation of the pedal surface in Carte-
sian coordinates, the following substitutes in Eq. 31 must be first im-
plemented:
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Xp
cos X, = w
siny, = ﬁ'ﬁﬁ
CO5 T, = _(x§ i yg)m
5
sin T, = ?

Then, after simplification it is possible to write Eq. 31 as:

ﬁ
s
d
2_ | (Z)(2)(Z ¥
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Finally, the equation of the pedal surface with respect to the principal
axes (x,,Y,,Z,) may be written:

N R B <Y | TR S—— (33)

Using similar reasoning, Eq. 33 can be generalized for any arbitrary
coordinate system (x,y,z) as follows:

ey Sl e SR OIS U0 T e (o (34)
(xy.z)

In particular, the equation of the pedal surface with respect to the
(v,a,d) coordinate system may be obtained after considering that a map-
ping such as

11 o e B (o T ol AUt S P PR S (35)
always can be established.
Therefore
d
Shecife TShagsboiing b ol heteion oaetius isbea’, sill acbmieh (36)
' {v,a,d) {2p.Yp.Zp)

and defining the coordinates of a point P in the (v,4,d) and (x,,¥,.%,)
systems respectively by:

Av
oo T 5 ot Somar: D R - @7
Ad
*p
T T S e (38)
Zp
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Finally: ({Av}{Ao}) = ({1} = {A0¥F D {A0} oevveinnnnnnn.. (39)

(v.a,d)

It is easy to demonstrate that the points (g, ,0,0), (0,,,0) and (0,0, o)
[i.e., the variances along the (v,a,d) frame], belong to the pedal surface
because they satisfy Eq. 39.

For example, if:

0y
AR SR s s 0, EIRIUIOD el YIS oidl) gty (40)
0
L Oy Oy a0,
then: of = {0, 00} e a e e L B R S (41)
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Appenpix [Il.—NoTaTiON
The following symbols are used in this paper:

(e,n,u) = local (right-handed) geodetic coordinate system at any
point (A, ,h). The e axis points to (geodetic) east, n to
(geodetic) north and u to the (geodetic) zenith;

H = Lamé matrix;

J = Jacobian matrix;

R = rotation matrix to transform form WGS72 to local geo-
detic system (e, n, u);

R = rotation matrix to transform from system (e, n,u) to (v,4,d);

r = distance between two points A (standpoint) and B (fore-
point);

(v,a,d) = local (right-handed) Cartesian system at any forepoint B;

the v axis points to positive v, a to positive « and d to
positive r;

€8



WGS72 coordinate system as defined by GPS satellite ob-
servations;

geodetic azimuth, 0 = a =< 2m;

geodetic longitude, 0 = A = 2m;

vertical angle, —1/2n = v < 1/2m;

geodetic latitude, —1/2n = ¢ = 1/27; and

general variance-covariance matrix of stochastic variables
X, Y Z.
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